
Future Generation Computer Systems 79 (2018) 16–25

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

PPDP: An efficient and privacy-preserving disease prediction scheme
in cloud-based e-Healthcare system
Chuan Zhang a, Liehuang Zhu a, Chang Xu a,*, Rongxing Lu b

a School of Computer Science & Technology, Beijing Institute of Technology, Beijing, China
b Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

h i g h l i g h t s

• An efficient privacy-preserving disease prediction scheme (PPDP) is proposed.
• PPDP can train prediction models without leaking the privacy of sensitive data.
• Security analysis indicates that PPDP is secure under a well-defined threat model.
• The performance evaluation on different datasets demonstrates PPDP’s efficiency.

a r t i c l e i n f o

Article history:
Received 18 October 2016
Received in revised form 23 June 2017
Accepted 3 September 2017
Available online 7 September 2017

Keywords:
Disease prediction
Privacy-preserving
Single-Layer Perceptron
Cloud computing

a b s t r a c t

Disease prediction systems have played an important role in people’s life, since predicting the risk of
diseases is essential for people to lead a healthy life. The recent proliferation of data mining techniques
has given rise to disease prediction systems. Specifically, with the vast amount of medical data generated
every day, Single-Layer Perceptron can be utilized to obtain valuable information to construct a disease
prediction system. Although the disease prediction system is quite promising, many challenges may limit
it in practical use, including information security and prediction efficiency. In this paper, we propose
an efficient and privacy-preserving disease prediction system, called PPDP. In PPDP, patients’ historical
medical data are encrypted and outsourced to the cloud server, which can be further utilized to train
prediction models by using Single-Layer Perceptron learning algorithm in a privacy-preserving way.
The risk of diseases for new coming medical data can be computed based on the prediction models.
In particular, PPDP builds on new medical data encryption, disease learning and disease prediction
algorithms that novelly utilize random matrices. Security analysis indicates that PPDP offers a required
level of privacy protection. In addition, real experiments on different datasets show that computation
costs of data encryption, disease learning and disease prediction are several magnitudes lower than
existing disease prediction schemes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Medical institutions, extensively distributed in the globalworld
to provide health services for patients, have to face a massive
amount of electronic health data (EHR) today. According to the
report released by consulting company EMC and research firm IDC,
the global healthcare data have reached 153 exabytes (1018 bytes)
in 2013, and would soon reach 2314 exabytes by 2020 [1]. These
medical data, on the one hand, require a great amount of space for
storage and management [2], on the other hand, might become
meaningless if no appropriate techniques can be developed to
find great potential values from them. Over the past two decades,
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data mining techniques have imposed a major impact on human’s
lifestyle by predicting human’s behaviors and future trends [3].
These techniques are well appropriate to convert stored data into
valuable information to provide decision support in the healthcare
system, e.g., to improve diagnosis accuracy and speed up diagno-
sis time. Disease Prediction Systems (DPSs), with various of data
mining techniques being applied, have drawn a great attention
recently [4–14]. Single-Layer Perceptron (SLP) classifier, as one
of the most popular data mining tools, has been widely used to
predict a variety of diseases [15]. Despite its simplicity, it is more
efficient and appropriate than some sophisticated techniques such
as Support Vector Machine (SVM) [16], Naïve Bayesian classifica-
tion [3] and so on.

The DPSs with SLP classifier have offered obvious advantages
in healthcare system and opens a new way to predict patients’
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diseases. Nevertheless, its flourish still hinges on how to fullyman-
age privacy issues and prediction efficiency, especially considering
sensitive medical data are stored in an unauthorized third-party.
Therefore, privacy-preserving data mining algorithms should be
built for protecting the privacy of medical data. Prediction mod-
els, which are obtained by training the medical data and used
to predict patients’ diseases, are incapable of being exposed to
the third party since they are considered as the hospital’s own
asset. Otherwise, the third partymight abuse predictionmodels for
disease diagnosis, which could damage hospitals’ or other service
providers’ profit. Therefore, how to preserve the privacy of predic-
tion models is also crucial for DPSs. Besides the privacy protection,
prediction efficiency is another important factor which needs to be
considered in designing a DPS. In particular, DPSs require learning
predictionmodels from a large amount ofmedical data. Traditional
cryptographic primitives such as Paillier homomorphic encryption,
though can protect medical data, are not highly efficient and prac-
tical. To the best of our knowledge, there is no privacy-preserving
SLP-basedDPS proposedwhich not only offers the required privacy
protection, but also is highly practical and efficient.

In this paper, to address the aforementioned problems, we pro-
pose an efficient and privacy-preserving DPS by using SLP learn-
ing algorithm, called PPDP. With PPDP, patients can get privacy-
preserving disease prediction services. Besides, the cloud server
learns no privacy of medical data and prediction models. If a pa-
tient is willing to submit his/her symptom information (e.g., blood
pressure, heart rate, etc.) to a hospital for disease prediction. Then,
the hospital will submit the encrypted symptoms to the cloud. The
cloud will use the encrypted prediction models trained by it to
diagnose the diseases without getting privacy information. Then,
the hospital will return the prediction results to the patient.

Specifically, the contributions of this paper can be summarized
as follows.

• First, this paper proposes a secure PPDP scheme which al-
lows the cloud server to diagnose patients’ diseases without
leaking sensitive information. In PPDP, patients’ historical
medical data are securely stored in the cloud and can be
used to build prediction models by using the SLP learning
algorithm. Based on the prediction models, the cloud server
can diagnose patients’ diseases in a privacy-preserving way.

• Second, to improve efficiency and minimize privacy disclo-
sure, PPDP builds on new and secure medical data encryp-
tion and prediction algorithms that novelly utilize random
matrices to protect privacy and facilitate secure outsourced
computation of ciphertexts. Even there exists a collusion
between patients and the cloud server, no party can obtain
sensitive information. By analyzing capabilities of adver-
saries in different attack scenarios, this paper indicates that
PPDP is practically-secure and can achieve a required level
of security.

• Third, to validate accuracy and efficiency of the PPDP, we
conduct experiments on real and synthetic datasets. Exten-
sive simulation demonstrates that PPDP can help to diag-
nose diseaseswith an acceptable success rate and is efficient
at all data encryption, disease learning and disease predic-
tion processes.

The remainder of this paper is organized as follows: Section 2
presents the problem formulation. In Section 3, we provide pre-
liminaries, which serve as the basis of our scheme. The proposed
PPDP scheme is described in Section 4, followed by the security
analysis in Section 5 and the performance evaluation in Section 6.
The related work is given in Section 7, and we conclude this work
in Section 8.

Fig. 1. Architecture of the privacy-preserving disease prediction cloud-based sys-
tem.

2. Models and design goal

In this section, we formulate the system model, threat model
and identify design goals.

2.1. System model

In this work, we mainly focus on how to securely train cloud-
based SLP classifier and use this classifier to decide patients’ dis-
eases without leaking privacy information. In such a way, the
system consists of three entities: a hospital, a cloud server and
patients, as shown in Fig. 1.

• Hospital: The hospital is an indispensable entity, which is
trusted by all patients, and in charge of generating secret
keys and encrypting allmedical data. It provides themedical
data including patients’ symptoms and confirmed diseases,
which can be used to train the SLP classifier.

• Cloud server: The cloud server contains unlimited storage
space, which is able to store all medical data in the system.
Hospitals which have limited storage space can outsource
their medical data to the cloud server. In addition, the cloud
server has computation abilities to execute the calculations
over the stored data including disease learning and disease
prediction.

• Patients: Patients have some symptom information (e.g.,
blood pressure, heart rate, etc.), which can be obtained from
doctors or collected by some sensors [17–19]. The symp-
toms are sent to the hospital for disease diagnosis.

2.2. Threat model

In our threat model, the cloud server is considered as honest but
curious [20]. That is, it will honestly follow the designed protocol
but attempt to disclose sensitive medical information as much as
possible. In practical applications, adversaries have different levels
of background knowledge and attack capabilities. Similar to [21],
we characterize the attack-specific capabilities in three scenarios.
The threat model is defined as follows:

• Level-I: The adversary can observe all encrypted EHRs and
queries. Level-I attack follows the well-known ciphertext-
only attack model [22].
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Fig. 2. Configuration of single-layer perceptron.

• Level-II: On the basis of Level-I attack, the adversary is as-
sumed to know some samples of EHRs, but has no idea
about the corresponding ciphertexts. Thismodel follows the
known-sample attack model [23].

• Level-III: On the basis of Level-I and Level-II attack, besides
the encrypted EHRs database, the adversary knows the ci-
phertexts generated by patients for prediction. Moreover,
the adversary can construct arbitrary EHRs of interest to
execute disease prediction. Level-III attack is similar to the
chosen-plaintexts attack model [22].

2.3. Design goals

Based on the aforementioned system model and threat model,
the primary design goal of the proposed PPDP scheme is to develop
an efficient and privacy-preserving disease prediction system. The
following design goals should be guaranteed:

• Learning and prediction: With the proposed scheme, the
cloud server can obtain a set of prediction models from the
medical data. When patients submit query EHRs, PPDP can
give prediction results based on the prediction models.

• Privacy protection: Sensitive EHRs and prediction models
should be well protected. The cloud server and patients
cannot learn anything other than what they have known.

• Efficiency: Hospitals always have limited computational re-
sources. PPDP should efficiently train medical data using
privacy-preserving SLP algorithm. When a patient submits
query EHRs, PPDP should efficiently output the prediction
results.

3. Preliminaries

In this section, we first review the SLP learning algorithm [24],
which serves as the basis of the proposed PPDP scheme. Before
that, we first list the notations which are used in Algorithm 1 and
Algorithm 2 in Table 1.

SLP is one of the most popular neural network architectures
which can decide whether an input belongs to one class or an-
other [24]. Fig. 2 shows a configuration of SLP. Specifically, it
contains two stages: input layer and output layer. Input nodes are
denoted as a set of vectors {x1, x2, . . . , xa} where xi ∈ Rd and
output layer nodes are denoted as {o1, o2} which are belonging to

{−1, 1}. wij is utilized to represent a weight connecting the input
layer node xi and the output layer node oj, where 1 ≤ i ≤ a, 1 ≤

j ≤ 2.
For the SLP learning algorithm, each input node (i.e., vector

xi) has a corresponding output (i.e., desired value oi ∈ {−1, 1}).
The goal is to find a weight to generate expected outputs for all
input layer nodes. A general SLP learning procedure is described
by Algorithm 1. The weight is initialized as a d-dimension vector
whose elements are set as small random values. In the input layer,
SLP receives a set of input nodes. Then, it calculates the values at
each layerwith theweight and sign function (i.e., an active function
to execute a two-class classification task onto the space {−1, 1})
according to Eq. (1), and further checks whether the result si is
equal to the desired value.

si = sign(f (wT
k xi)

= sign(f (wk1 ∗ xi1 + wk2 ∗ xi2 + · · · + wkd ∗ xid)).
(1)

If si ̸= oi, the weight will be updated according to Eqs. (2) and (3)
and the learning procedure is repeated. The learning process will
be terminated if a convergence criterion (e.g., a threshold or a max
number of iterations) is satisfied.

△wk = oixi (2)

wk+1 = wk + η△wk. (3)

Algorithm 1: Single-Layer Perceptron Learning Algorithm.
Input: d-dimension vectors < xi >a

i=1, learning rate η, desired
value < oi >a

i=1∈ {−1, 1}, iterationmax, sign function
sign(·);

Output: Weight: w;
1 Randomly initialize w;
2 for iteration = 1, 2, · · · , iterationmax do
3 for i = 1, 2, · · · , a do
4 compute the sign function (see Eq. (1));
5 if si ̸= oi then
6 update the weight (see Eqs. (2), (3));
7 else
8 //Learning Finish;
9 break;

10 return w;

4. Proposed PPDP scheme

In this section, we will describe the proposed PPDP scheme,
which mainly consists three phases: system setting, disease learn-
ing and disease prediction.

4.1. PPDP overview

In this part, we first give an overview of the proposed cloud-
based privacy-preserving disease prediction system. In reality,
suppose a patient is willing to submit his/her symptom informa-
tion (e.g., blood pressure, heart rate, etc.) to a hospital for disease
prediction. Then, the hospital predicts the patient’s diseases based
on the symptom information and prediction models. In this proce-
dure, the proposed PPDP focuses on how to efficiently train predic-
tionmodels and use thesemodels to diagnose the diseaseswithout
leaking privacy information. Specifically, PPDP mainly consists of
two phases: disease learning phase and disease prediction phase.

• Phase 1: Disease learning phase. In this phase, the hos-
pital firstly generates ciphertexts of all medical data and
prediction models for all diseases, and then submits them
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Table 1
Summary of notations.

Algorithm Symbol Definition

SLP

xi Input vector, i ∈ {1, a}, xi ∈ Rd

oi Output value, oi ∈ {−1, 1}
w Weight vector, w ∈ Rd

s sign(·) function
η Learning rate, η > 0

PPDP

m Number of diseases, m > 0
Dk k-disease, k ∈ {1,m}

xi i-EHR, i ∈ {1, n}, xi ∈ Rd

xij j-symptom of i-EHR, j ∈ {1, d}, xij ∈ R
wk k-disease’s prediction model, wk ∈ Rd

oi Output of i-EHR, oi ∈ {−1, 1}
M1,M2,H Secret keys, {M1,M2} ∈ Rd×d,H ∈ Rd

Ei, Fk d-dimension random vectors, {Ei, Fk} ∈ (R+)d

Ci, Chi Ciphertexts of i-EHR, {Ci, Chi} ∈ Rd×d

Cwk Ciphertext of k-disease’s prediction model, Cwk ∈ Rd×d

to the cloud server. After receiving ciphertexts from the
hospital, the cloud server executes training procedure based
on the encrypted medical information and decides whether
to update the medical data. When the hospital receives
the updated medical data, it will decrypt and update the
prediction models, and then return the prediction model
to the cloud in ciphertext. The above training phase starts
with a random initialization of the prediction model for
each disease, and is then iteratively conducted. At last, the
cloud server can obtain encrypted prediction models for all
diseases.

• Phase 2: Disease prediction phase. When a patient wants
to identify his/her disease, a new EHR (i.e., an EHR without
the diagnosis result) is submitted to the hospital. Then, the
hospital encrypts it and sends the ciphertext to the cloud.
Based on the encrypted prediction models, the cloud is
able to calculate the prediction results without decrypting
the ciphertexts, and then sends the results to the hospital.
When the hospital receives prediction results, it returns the
results and some medical advices (e.g., disease prediction,
outpatients registration, doctor recommendations, etc.) to
the patient.

4.2. System setting

For a cloud-based DPS, the hospital bootstraps the whole PPDP
scheme. Specifically, the hospital stores a collection of specific
disease patterns ⟨Dk⟩

m
k=1, each of which contains a set of EHRs

⟨xi, oi⟩ni=1. xi is a d-dimension vector, where each element in xi
represents a specific symptom (e.g., temperature, blood pressure,
serum cholesterol, etc.) and oi ∈ {−1, 1} represents the desired
output where −1 represents suffering from Dk and 1 represents
not. We assume the EHRs have been pre-processed such that the
representations are fit for our scheme.

Given two random d × d invertible matrices {M1,M2} and a
random d-dimension vector H as secret keys, where {M1,M2} ∈

Rd×d and H ∈ Rd. The hospital encrypts EHRs and the weight as
follows.

EHR Encryption: For an EHR xi ∈ Dk, the hospital generates a
randommatrix Di to blind xi as

Di =

⎡⎢⎢⎣
A11 ∗ xi1 A12 ∗ xi1 · · · A1d ∗ xi1
A21 ∗ xi2 A22 ∗ xi2 · · · A2d ∗ xi2
...

...
. . .

...

Ad1 ∗ xid Ad2 ∗ xid · · · Add ∗ xid

⎤⎥⎥⎦ (4)

where Al is set as a d-dimension random vector, 1 ≤ l ≤ d, Al ∈ Rd,
and satisfies

∑d
j=1Alj ∗ Hj = 1. In other words, xi can be recovered

by computing xTi = Di × HT .

Table 2
EHRs and ciphertexts for a disease Dk .

EHR Information Ciphertexts Desired output

x1 [x11, x12, . . . , x1d] {C1, Ch1} o1
x2 [x21, x22, . . . , x2d] {C2, Ch2} o2
· · · · · · · · · · · ·

xn [xn1, xn2, . . . , xnd] {Cn, Chn} on

Then, the hospital encrypts Di and H as

Ci = M−1
1 × Di × M2, (5)

Chi = M−1
2 × HT

× Ei (6)

where Ei is a random vector with d positive elements, Ei ∈ (R+)d.
The encrypted EHRs are stored as shown in Table 2.
Afterward, the tuple {Ci, Chi, oi, Ik} is uploaded to the cloud

server, where Ik is the index of disease Dk.
Weight Encryption: In our scheme, the prediction model

(i.e., weight) is also sensitive. For a specific disease Dk, the hospital
randomly generates a weight wk = [wk1, wk2, . . . , wkd] and en-
crypts it as

Cwk = F T
k × wk × M1 (7)

where Fk is a random vector with d positive elements like Ei, Fk ∈

(R+)d.
Note that, each matrix multiplication has a time complexity of

O(d3) and eachmatrix–vectormultiplication costsO(d2), where d is
the dimension of the EHR vector. Thus, encrypting xi and wk costs
O(d3) and O(d2) respectively.

4.3. Disease learning

The privacy-preserving SLP learning procedure is described by
Algorithm 2.

In system setting phase, for each historical EHR ⟨xi, oi⟩ni=1 ∈ Dk,
where 1 ≤ k ≤ m, the hospital encrypts it and stores the ciphertext
{Ci, Chi, oi, Ik} in the cloud server. To learn the prediction model wk
for Dk, the cloud server selects ciphertexts with the same Ik and
executes the training process as follows.

• Step 1: The hospital generates a randomweightwk in which
not all elements are equal to 0, and executes the Weight
Encryption operation. Then, the hospital uploads the tuple
{Cwk, Ik} to the cloud server.

• Step 2: With the weight tuple, the cloud server randomly
selects a ciphertext {Ci, Chi, oi, Ik} and executes the sign(·)
function as

si = sign(tr(Cwk × Ci × Chi)) (8)
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where tr(·) denotes the trace function. If si ̸= oi, the cloud
server will update the ciphertext Ci as ηCi and sends it
back to the hospital. Thus, in step 2, 2 matrix multiplication
operations are needed for the cloud server, each of which
costs O(d3) respectively.

• Step 3: After receivingηCi from the cloud server, the hospital
updates wk as

wk = wk + (M1 × ηCi × M−1
2 × HT )T × oi. (9)

Then, the hospital encrypts the improved weight and re-
peats the steps from step 2. Otherwise, if si is equal to oi, the
cloud serverwill remainwk and repeat the steps from step 2.
In step 3, to update the weight vector, the hospital needs to
execute vector–matrixmultiplication operationswhich cost
O(d2).

• Step 4: If the convergence criterion is satisfied, the hospital
terminates the training process. After iterating and updat-
ing, wk is identified and can be seen as the prediction model
for Dk. The hospital then encrypts wk as {Cwk, Ik} and stores
it in the cloud server.

• Step 5: After obtaining the predictionmodel forDk, the cloud
server selects another EHRs training set ⟨xi, oi⟩ni=1 ∈ Dk+1

and repeats the steps from step 1. After all EHRs are trained,
the cloud server gets a set of encrypted prediction models
⟨Cwk, Ik⟩mk=1 for disease patterns ⟨Dk⟩

m
k=1.

Algorithm 2: Privacy-Preserving SLP Learning Algorithm.
Input: n input sample d-dimension EHRs, < xi >n

i=1∈ Dk,
1 ≤ k ≤ m, iterationmax, learning rate η, desired value
oi ∈ {−1, 1}, sign function si = sign(f (wT xi));

1 . Output: Prediction model: wk, 1 ≤ k ≤ m;
2 for 1 ≤ k ≤ m do
3 the hospital selects historical EHRs set Dk;
4 for 1 ≤ i ≤ n do
5 //the hospital executes EHR Encryption;
6 xi is encrypted as {Ci, Chi, oi, Ik} and then uploaded to

the cloud server (see Eqs. (4)–(6));

7 for 1 ≤ k ≤ m do
8 the hospital randomly initializes wk ;
9 for iteration = 1, 2. · · · , iterationmax do

10 for 1 ≤ i ≤ n do
11 //the hospital executesWeight Encryption;
12 wk is encrypted as {Cwk, Ik} and then uploaded to

the cloud server (see Eq. (7));
13 the cloud server computes sign(·) function (see Eq.

(8));
14 if si ̸= oi then
15 he cloud server returns ηCi to the hospital and

then the hospital updates the weight (see Eq.
(9));

16 else
17 //Learning Finish;
18 break;

19 return wk, 1 ≤ k ≤ m;

Correctness Analysis: The correctness of disease learning al-
gorithm can be illustrated as follows: In step 2, the cloud server
executes the sign(·) function as

si = sign(tr(Cwk × Ci × Chi))
= sign

(
tr

(
F T
k × wk × M1 × M−1

1 × Di

×M2 × M−1
2 × HT

× Ei
))

= sign(tr(F T
k × wk × xTi × Ei))

= sign(tr(F T
k × (wk × xTi ) × Ei))

(10)

where wk × xTi is a real number. Note that Fk and Ei are two
random positive vectors. Assuming Fk = [Fk1, Fk2, . . . , Fkd] and
Ei = [Ei1, Ei2, . . . , Eid], by the definition of trace, we have

Ti = tr(F T
k × Ei) =

d∑
j=1

Fkj ∗ Eij. (11)

Based on Eq. (11), Ti is always positive andwill not compromise the
result of sign(wk × xTi ). Thus, the hospital has

si = sign(tr(Cwk × Ci × Chi)
= sign(wk × xTi ).

(12)

Thus, the computation result si in Eq. (10) is consistent with that in
Eq. (1).

In step 3, the hospital updates wk as

wk = wk + (M1 × ηCi × M−1
2 × HT )T × oi

= wk + (ηDi × HT )T × oi
= wk + ηxioi

(13)

which is also consistent with that in Eqs. (2) and (3).
Thus, the hospital can get the correct prediction model in the

outsourcing environment. In other words, the correctness of dis-
ease learning is satisfied.

4.4. Disease prediction

In disease prediction phase, for m prediction models ⟨wk⟩
m
k=1,

the cloud server has already encrypted and stored the ciphertexts
in the cloud. When a patient submits a new EHR, the prediction
operations are executed as follows.

• Step 1: With the new coming EHR xq, the hospital encrypts
it as {Cq, Chq} following EHR Encryption as

Cq = M−1
1 × Dq × M2, (14)

Chq = M−1
2 × HT

× Eq. (15)

Then, the hospital uploads the ciphertext to the cloud server.
In this step, the time cost of hospital is the same as that
of encrypting xi in the system initialization phase, which is
O(d3).

• Step 2: On receiving {Cq, Chq}, the cloud server executes the
sign(·) function between the encrypted prediction model
⟨Cwk, Ik⟩mk=1 and {Cq, Chq} as

sk = sign(tr(Cwk × Cq × Chq)). (16)

If sk > 0, the cloud server considers the patient may suffer
from the disease and sends the corresponding Ik to the
hospital. The cloud server needs to execute 2 matrix multi-
plication operations, each of which costs O(d3) respectively.

• Step 3: After receiving the index, the hospital returns the
prediction results to the patient.

Correctness Analysis: The correctness of disease prediction can
be illustrated as follows: In step 2, the cloud server executes sign(·)
as
sk = sign(tr(Cwk × Cq × Chq))

= sign(tr(F T
k × Eq × wk × xTq ))

= sign(wk × xTq ).
(17)
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Based on the above equation and the definition of SLP, the cloud
server can confirm if patients suffer from the disease of Dk by
computing sk. As a result, the correctness of disease prediction is
satisfied.

5. Security analysis

In this section, we analyze the security of the proposed PPDP
scheme. As mentioned in Section 2.2, a higher-level attack is
more powerful than a lower-level one. Thus, if the PPDP scheme
can resist Level-III attack, we can demonstrate that it is secure.
Specifically, in Level-III attack, the adversary can (i) observe the
ciphertexts {Ci, Chi, Cwk} and all computation results, and (ii) ob-
serve some historical EHRs in the plaintexts database and know
the corresponding ciphertexts, and (iii) choose some queries of
interest and observe their encrypted versions. Our analysis focuses
onhow the proposed PPDP achieves privacy protection of EHRs and
prediction model (i.e., weight) under Level-III attack.

Theorem 1. In the proposed PPDP scheme, EHRs are privacy-
preserving under Level-III attack.

Proof. Let the knowledge of the adversary be a set of tuples
⟨xi, Ci, Chi⟩. Without loss of generality, the adversary can choose
any t plaintext/ciphertext pairs in the EHRs database and observe
Cwk in the training phase.

As shown in Eqs. (5)–(7), to recover xi, the adversary needs to
recover the secret keysM1,M2 andH . Accordingly, the attacker can
build the following equations as

Ci = M−1
1 × Di × M2,

Chi = M−1
2 × HT

× Ei,

Cwk = F T
k × wk × M1.

(18)

In these equations,M1,M2,M−1
1 ,M−1

2 are d∗d randomunknown
matrices and HT is a random d-dimension vector. Note that Di is a
random d∗dmatrix which is blinded by d2 randomunknowns, and
Ei, F T

k are chosen differently in each encryption operation. Thus, all
ciphertexts in the proposed PPDP are randomly generated.

To recoverM1, 2d2 equations can be built. However, with (2d2+
2d) unknowns, the adversary cannot compute M1. Following the
same analysis, the adversary cannot recoverM2 with 2d2 equations
and (2d2 + 2d) unknowns. To recover HT , d equations can be built,
but there are (d2 + d) unknowns. Therefore, the adversary cannot
recover secret keys M1, M2 and H with the ciphertexts and the
corresponding plaintexts.

While the secret keys cannot be recovered, the adversary may
propose to bypass the computation of secrets and derive xi directly.
In disease learning phase, the adversary can compute Cwk×Ci×Chi,
denoted as Pi,

Pi = Cwk × Ci × Chi

= F T
k × wk × xTi × Ei

(19)

where F T
k and Ei are random positive vectors. To recover xTi , the

adversary can build d equations, however, xTi cannot be computed,
since 3d unknowns are included in these equations. When the
adversary acts as a patient, he/she may submit multiple prediction
queries, say u queries. Thus, the adversary is able to build u ∗ d
more equations according to Eq. (19). However, u ∗ 3d unknowns
are also introduced alongwith the u queries. Moreover, we assume
that an ‘‘ideal’’ powerful attacker knows wk (which is impossible
in practice). However, although dmore equations can be built, the
number of equations are still fewer than the number of unknowns.

Therefore, based on the above analysis, EHRs are well protected
and the Level-III attacker cannot build enough knowledge to break
the PPDP scheme.

Theorem 2. In the proposed PPDP scheme, prediction model achieves
privacy-preserving under Level-III attack.

Proof. The prediction model is a d-dimension vector randomly
generated by the hospital and updated in the training process. Fol-
lowing the same analysis in proof, secret keys are well protected.
Then, we consider ⟨wk, Cwk⟩. As shown in Eqs. (7) and (19), to
recover wk, the adversary can build the following equations

Cwk = F T
k × wk × M1 (20)

Pi = F T
k × wk × xTi × Ei (21)

where Fk and Ei are randomly generated by the hospital. To recover
wk, the adversary can build 2d equations. However, wk cannot be
computed with 2d equations and (d2 + 3d) unknowns.

Then, we assume xi and xq are known to the adversary (e.g., the
adversary observes xi in the plaintexts database or acts as a patient
to submit xq). Although the adversary holds xi as his/her extra
knowledge, there are (d2 + 2d) unknowns in 2d equations.

We further consider an ‘‘ideal’’ attacker who has the ability to
observe some weights. To recover the unknown wk, the attacker
needs to figure out the secret keys. However, note that Fk is
randomly generated when encrypting wk. With d equations built,
another d unknowns will be introduced. Therefore, the Level-III
attacker cannot access the sensitive information.

6. Performance evaluation

In this section, we present the performance evaluation of the
proposed PPDP scheme.

6.1. Computation cost

We evaluate computation cost of the proposed PPDP scheme by
using Java language. Specifically, for hospital, we utilize a laptop
with Core(TM) i5-2430M 2.40 GHz CPU and 8GB memory, and
use the same laptop for the cloud server. In the experiment, two
datasets are considered. A real dataset [25] is utilized from the UCI
machine learning repository. This dataset is used to test the per-
formance of the SLP classifier based on our PPDP scheme. Without
loss of generality, we also utilize a synthetic dataset to test all the
factors which might affect the performance of PPDP.

6.1.1. Real dataset
The real dataset includes 683 instances for Breast Cancer and

297 instances for Heart Disease. For Breast Cancer dataset, each
instance contains nine attributes [clump thickness; uniformity
of cell size; uniformity of cell shape; marginal adhesion; single
epithelial cell size; bare nuclei; bland chromatin; normal nucleoli;
mitoses] and two decisions [benign as 1; malignant as −1]. All
these attributes are integers from1 to 10. ForHeartDisease dataset,
each instance contains thirteen attributes [age; sex; chest pain
type; trestbps; chol; fbs; restecg; thalach; exang; oldpeak; slope;
ca; thal] and also two decisions [benign as 1; malignant as −1].
All attributes range from 0 to 10 except for age, trestbps (resting
blood pressure), chol (serum cholesterol in mg/dl) and thalach
(maximum heart rate achieved). We first use the proposed PPDP
to train SLP classifier, and then use the SLP classifier and two
real datasets to test the error rate of the classifier. We set the
iteration threshold as 10000 and the specific information of two
real datasets is listed in Table 3. From this table, we can see the
error rate for Breast Cancer and Heart Disease are around 16.83%
and 16.13% respectively, which is acceptable [6]. We also test
the running efficiency about PPDP. Table 4 shows the time costs
of PPDP, HE-Based and Local schemes in different phases after
10000 iterations. For Breast Cancer dataset, it takes 0.011 s to
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Table 3
Experiment datasets and parameters.

Dataset Sample Attributes Class Learning rate Error rate

Breast cancer 683 9 2 0.1 16.83%
Heart disease 297 13 2 0.1 16.13%

Table 4
Time costs of PPDP, HE-based and local schemes.

Dataset Phase PPDP HE-based scheme Local scheme

Breast cancer Data encryption 0.011 s 54.308 s 0 s
Disease learning 0.058 s 3069.824 s 0.015 s

Heart disease Data encryption 0.013 s 85.155 s 0 s
Disease learning 0.142 s 1764.279 s 0.013 s

encrypt all instances, and in disease learning phase, it needs 0.058
s (0.025 s spent on hospital side and 0.031 s spent on the cloud
server side). For Heart Disease dataset, it takes 0.013 s to encrypt
all 297 instances, and in disease learning phase, it requires 0.140 s
(including 0.071 s for hospital and 0.068 s for the cloud server).

To show the efficiency of PPDP, we implement a privacy-
preserving SLP algorithm based on homomorphic encryption tech-
nique, called HE-Based scheme, where the modulus is set as 1024
bits and at least 1 − 2−64 certainty of primes are generated, and a
scheme in which the hospital performs the SLP algorithm by itself
without privacy protection, called local scheme. From Table 4, we
can see PPDP takes less than one second to execute data encryption
and disease learning, while the HE-Based scheme needs tens of
seconds and thousands of seconds respectively. Therefore, the
running time of PPDP is significantly less than that of HE-Based
scheme. In disease learning phase, local scheme needs 0.0015 s
and 0.0013 s for Breast Cancer and Heart Disease respectively. In
contrast, PPDP needs 0.058 s and 0.142 s. The reason is though the
cloud server can efficiently perform computation over ciphertexts,
the computational overhead of data encryption/decryption on the
hospital side is inevitable. However, we emphasize that the local
scheme has sacrificed substantial security and thus cannot be
utilized to train medical data which are stored in the cloud server.

6.1.2. Synthetic database
We randomly generate synthetic dataset, which consists of 500

tuples with 20 attributes. All attributes are randomly picked from
0 to 10. The number of iteration is set as 10000. Note that there are
three factors that affect the total running time of PPDP: the num-
ber of historical EHRs (Nhehr ), the number of symptom attributes
contained in each medical data (Nsa), the number of diseases (Nd).
In Figs. 3–5, we plot the running time over the synthetic dataset
of the PPDP and HE-Based schemes vary with Nhehr , Nsa and Nd
respectively.

In Fig. 3(a)-(b), the data encryption time increases with the
number of medical data, where 50 ≤ Nhehr ≤ 500,Nd = 1,Nsa =

20. The reason is the hospital needs to encrypt more data as Nhehr
increases. As can be seen, when Nhehr reaches 500, PPDP only
needs 48 ms to encrypt medical data, while the HE-Based scheme
takes 139.6 s. In disease learning phase, the running time is nearly
not affected, since the number of iteration is stable. For the two
schemes, it takes about 500 ms and 7000 s respectively, which
demonstrates the efficiency of PPDP.

In Fig. 4(a)–(b), we show the running time varies with the num-
ber of symptom attributes, where 11 ≤ Nsa ≤ 20,Nd = 1,Nhehr =

500. As can be seen, the running time of data encryption and
disease learning increases with the number of attributes. With the
increase of Nsa, PPDP needs to perform higher-dimension matrices
operations, and the HE-Based scheme calls more multiplications.
For PPDP, the data encryption time ranges from 13 ms to 50 ms
as the number of attributes varies from 11 to 20. For HE-Based
scheme, the time cost ranges from 77.787 s to 141.062 s. Thus,

Table 5
A summary of computation cost for each EHR xi in PPDP, d ≪ s, d ≪ m.

Phase Step Entity Computation cost

System setting – Hospital O(s ∗ d3)

Disease learning Step 2 Cloud O(d3)

Hospital O(d2)

Disease prediction Step 1 Hospital O(d3)

Step 2 Cloud O(m ∗ d3)

PPDP can significantly improve the efficiency in data encryption
and disease learning phase.

In Fig. 5(a)–(b), we plot the running time in disease prediction
phase varies with the number of diseases, where 50 ≤ Nd ≤

200,Nsa = 20. It can be seen, for a new coming EHR, the running
time at the cloud side increases linearly with increased number
of diseases, while the running time at the hospital side remains
approximately constant. The reason is, in disease prediction phase,
the hospital only needs to encrypt the new coming EHR, while
the cloud calls more operations (i.e., sign(tr(Cwk × Cq × Chq)) for
PPDP, and E(w) · E(xi) for HE-Based scheme). When the number
of diseases varies from 50 to 500, the prediction time ranges from
0.52 ms to 4.298 ms for PPDP, and ranges from 2.170 s to 17.524 s
for the HE-Based scheme. That is, PPDP can save about 99.98% time
for disease prediction.

6.2. Complexity analysis

In this part, we give an overview of the complexity of the
proposed PPDP scheme, in terms of the computation and commu-
nication costs.

6.2.1. Computation cost
Table 5 illustrates the computation cost for each step of system

setting, disease learning and disease prediction phases. Note that,
matrix multiplication has a time complexity of O(d3), where d is
the dimension of the EHR vector, andmatrix–vectormultiplication
costs O(d2). In the system setting phase, encrypting xi and H costs
O(d3) and O(d2) respectively. Thus, the complexity for the system
setting is O(s ∗ d3), where s is the number of EHRs in the database.
Although the complexity grows linearly with the number of EHRs,
it is a one-time cost. In step 2 of training phase, to execute sign(·)
function, 2 matrix multiplications are needed for the cloud server,
each ofwhich costsO(d3). On the hospital side, updating theweight
costs O(d2). In the disease prediction phase, the time cost of step 1
is the same as that of encrypting xi in the system initialization. To
diagnose patients’ diseases, in step 2, the complexity for the cloud
server is O(m ∗ d3), wherem is the number of prediction models.
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(a) PPDP scheme.

(b) HE-based scheme.

Fig. 3. Computation cost varying with the number of historical EHRs.

Table 6
A summary of communication overhead in PPDP. Here, k denotes the number of
disease prediction results returned, k ≪ m.

Message Communication overhead

E(xi) O(s ∗ d2)

Cwk O(d2)

ηCi O(d2)

I O(k)

6.2.2. Communication cost
Table 6 illustrates the communication overhead of the proposed

PPDP scheme. As described in Section 4, the transmitted data
includes the encrypted EHRs E(xi), encrypted weight Cwk, updated
data ηCi and the prediction results I . In system setting phase, it
costs O(s ∗ d2) to transmit the whole encrypted database from
the hospital to the cloud server, where s is the number of EHRs.
Although the communication time grows linearly with the size
of EHRs database, it is a one-time cost for system setting. To
reduce the bandwidth cost, hard disks can be used to transmit the
encrypteddatabase. For other transmitted data,Cwk is a d×dmatrix
which costs O(d2), ηCi is a d ∗ d matrix with a cost of O(d2), and
prediction results are indexes which costs O(k).

7. Related work

Recently, a large variety of disease prediction models have
been developed in biomedical engineering [7–13]. For example, to

(a) PPDP scheme.

(b) HE-based scheme.

Fig. 4. Computation cost varying with the number of symptom attributes.

diagnose the neurological diseases, multiclass support vector ma-
chine was utilized for multiclass electroencephalogram signals [7].
Ajemba et al. [8] proposed a fast predictive model by using a sup-
port vector classifier approach to predict the risk of progression of
adolescent idiopathic scoliosis. In order to diagnose the pancreatic
cancer, Wang et al. [9] developed a disease prediction approach
by using Bayesian classification. In [10], Barakat et al. proposed
a hybrid system by using SVM for the diagnosis of diabetes. A
diagnosis model was constructed by Huang et al. for the diagnosis
of breast cancer by using SVM [11]. To predict the heart disease,
Anooj et al. [12] proposed a fuzzy rule-based decision support
system. Focus on multivariate logistic regression, Bouwmeester
et al. [13] developed a prediction model using multiple symptoms
and environmental data to fit a logarithmic transformation of the
likelihood of the tested disease. These works, though have devel-
oped various prediction models, fail to take into consideration an
important issue in the design of disease prediction systems, i.e., the
privacy protection of medical information, especially privacy has
become a major concern in nowadays.

To address this challenge, secure disease prediction [3–6,14–16],
i.e., to diagnose patients’ diseases without leaking medical data
and prediction model, have recently been widely studied. Mathew
and Obradovic [14] presented a privacy-preserving framework
for building a clinical tool in the form of decision tree, never-
theless, it can only protect the privacy of training database by
employing statics about the samples. Bos et al. [4] implemented
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(a) PPDP scheme.

(b) HE-based scheme.

Fig. 5. Computation cost for a new EHR prediction varying with the number of
diseases.

a privacy-preserving prediction service to diagnose the possibil-
ity of suffering from a disease based on the logistic regression
and Cox proportional model by using a lattice-based homomor-
phic encryption scheme [26]. Wang et al. [15] presented a cloud-
based privacy-preserving Single-Layer Perceptron learning for e-
Healthcare based on the Paillier homomorphic encryption tech-
nique. However, for the two schemes in [4] and [15], the predic-
tion model is publicly known. Focus on the protection of human
data, Wang et al. [6] proposed a Healer framework. Specifically,
they used a small samples size to facilitate secure rare variants
analysis, and obtained final results by decrypting ciphertexts in
the trusted party. In their framework, somewhat homomorphic
encryption technique is utilized to protect sensitive information.
Rahulamathavan et al. [5] presented a privacy-preserving scheme
by using support vector machine for the diagnosis of patients’
diseases without disclosing any privacy of patients. Similarly, Liu
et al. [3] proposed a privacy-preserving clinical diagnosis system
by using Naïve Bayesian classification, which can help clinicians
to securely diagnose the risk of patients’ diseases. These works,
since all the encryption and decryption operations are based on
homomorphic encryption technique, are not efficient. To improve
the efficiency, Zhu et al. [16] proposed a novel framework that
greatly improves the prediction efficiency without disclosing any
sensitive medical information. In their protocol, medical data and
support vectors are protected with lightweight multi-party ran-
dom masking and polynomial aggregation technique based on an

improved expression for the nonlinear SVM. However, their work
is based on the assumption that there is no collusion between
the patient and the server provider since all support vectors are
stored in the server in the plaintext form. Once such a collusion
occurs, the components of the SVM classifier can be computed
and then the diagnosis model will be disclosed. To improve the
efficiency of big data feature learning, Zhang et al. [27] proposed
a privacy-preserving deep computation model on cloud for big
data feature learning, whichmight be utilized in disease prediction
system. However, the accuracy performance of their scheme is
a little lower than that of the deep computation model without
privacy protection [28].

Recently, encryption algorithms based onmatrices has received
increasing attention and has been utilized in many fields. Accord-
ingly, a series of works such as [29–34] have been published. Dif-
ferent from privacy-preserving disease prediction schemes based
on traditional encryption techniques such as Paillier homomorphic
encryption techniques, this paper utilizes the matrices to encrypt
data and predict patients’ diseases without leaking the privacy
information. Compared with existing works based on some so-
phisticated machine learning algorithms such as SVM [16], Naïve
Bayesian classification [3], this paper uses SLP to build predic-
tion models. SLP is more efficient due to its simplicity. Besides,
the prediction result is acceptable compared with the schemes
in [3,15,16].

8. Conclusions

In this work, we propose an efficient and privacy-preserving
disease prediction scheme, called PPDP. The proposed PPDP
scheme is characterized by employing random vectors and matri-
ces,which enables the outsourced EHRs can behandled and trained
on the cloud server by using SLP algorithm without leaking sen-
sitive information. Detailed analysis indicates that the proposed
PPDP achieves a high level of privacy protection and efficiency.
In future, we will work on designing more efficient and privacy-
preserving disease prediction models.
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